Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The molecular catalyst diacetyl-bis( N -4-methyl-3-thiosemi-carbazonato)nickel( ii ) (NiATSM) was integrated with Si for light-driven hydrogen evolution from water. Compared to an equivalent loading of Ni metal, the NiATSM/p-Si electrode performed better. Durability of the surface-bound catalyst under operation in acid was achieved without covalent attachment by using Nafion binding.more » « less
-
Abstract Slurries of semiconductor particles individually capable of unassisted light‐driven water‐splitting are modeled to have a promising path to low‐cost solar hydrogen generation, but they have had poor efficiencies. Tandem microparticle systems are a clear direction to pursue to increase efficiency. However, light absorption must be carefully managed in a tandem to prevent current mismatch in the subcells, which presents a possible challenge for tandem microwire particles suspended in a liquid. In this work, a Ni‐catalyzed Si/TiO2tandem microwire slurry is used as a stand‐in for an ideal bandgap combination to demonstrate proof‐of‐concept in situ alignment of unassisted water‐splitting microwires with an external magnetic field. The Ni hydrogen evolution catalyst is selectively photodeposited at the exposed Si microwire core to serve as the cathode site as well as a handle for magnetic orientation. The frequency distribution of the suspended microwire orientation angles is determined as a function of magnetic field strength under dispersion with and without uplifting microbubbles. After magnetizing the Ni bulb, tandem microwires can be highly aligned in water under a magnetic field despite active dispersion from bubbling or convection.more » « less
-
Abstract Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long‐term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well‐developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV–vis, ambient pressure X‐ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on‐line inductively coupled plasma mass spectrometry (ICP‐MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC‐AFM), electrochemical scanning tunneling microscopy (EC‐STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison.more » « less
-
Abstract The conversion of waste CO2to value‐added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non‐aqueous solvents like methanol allows for higher CO2availability and novel products. In this work, the electrochemistry of CO2reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half‐reaction. The selectivity among methyl formate (a product unique to reduction of CO2in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at −2.0 V vs. Ag/AgCl.more » « less
An official website of the United States government
